3.8.60 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\) [760]

3.8.60.1 Optimal result
3.8.60.2 Mathematica [F]
3.8.60.3 Rubi [A] (verified)
3.8.60.4 Maple [C] (warning: unable to verify)
3.8.60.5 Fricas [F(-1)]
3.8.60.6 Sympy [F]
3.8.60.7 Maxima [F]
3.8.60.8 Giac [F]
3.8.60.9 Mupad [F(-1)]

3.8.60.1 Optimal result

Integrand size = 37, antiderivative size = 213 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 A b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {2 A E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \]

output
-2*A*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d 
*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+ 
c)^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1 
/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b 
+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+2*A* 
(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2* 
c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a/d/((b+a*cos(d*x+c))/( 
a+b))^(1/2)/sec(d*x+c)^(1/2)
 
3.8.60.2 Mathematica [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \]

input
Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d* 
x]]),x]
 
output
Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d* 
x]]), x]
 
3.8.60.3 Rubi [A] (verified)

Time = 1.82 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.541, Rules used = {3042, 4597, 3042, 4346, 3042, 3286, 3042, 3284, 4349, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4597

\(\displaystyle A \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx+C \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4346

\(\displaystyle A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {C \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {C \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3286

\(\displaystyle A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3284

\(\displaystyle A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4349

\(\displaystyle A \left (\frac {\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}-\frac {b \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {\int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4343

\(\displaystyle A \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle A \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle A \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4345

\(\displaystyle A \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle A \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle A \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}\right )+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\)

input
Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]),x 
]
 
output
(2*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/( 
a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) + A*((-2*b*Sqrt[( 
b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Se 
c[c + d*x]])/(a*d*Sqrt[a + b*Sec[c + d*x]]) + (2*EllipticE[(c + d*x)/2, (2 
*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + 
 b)]*Sqrt[Sec[c + d*x]]))
 

3.8.60.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4346
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_)], x_Symbol] :> Simp[d*Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x 
]]/Sqrt[a + b*Csc[e + f*x]])   Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4349
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)]), x_Symbol] :> Simp[1/a   Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Cs 
c[e + f*x]], x], x] - Simp[b/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Cs 
c[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4597
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[C/d^ 
2   Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[A 
Int[1/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, 
b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 
3.8.60.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 8.09 (sec) , antiderivative size = 946, normalized size of antiderivative = 4.44

method result size
parts \(\frac {2 A \sqrt {\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (\left (1-\cos \left (d x +c \right )\right )^{3} a \sqrt {\frac {a -b}{a +b}}\, \csc \left (d x +c \right )^{3}-\left (1-\cos \left (d x +c \right )\right )^{3} b \sqrt {\frac {a -b}{a +b}}\, \csc \left (d x +c \right )^{3}+\operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a \sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}-\operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a \sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}+\operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b \sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}-a \sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-b \sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{d \sqrt {\frac {a -b}{a +b}}\, a \left (a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b \right ) \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}-\frac {2 C \left (-\operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+2 \operatorname {EllipticPi}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right )\right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \cos \left (d x +c \right )^{2}}{d \sqrt {\frac {a -b}{a +b}}\, \left (b +a \cos \left (d x +c \right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\) \(946\)
default \(\text {Expression too large to display}\) \(1026\)

input
int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
2*A/d/((a-b)/(a+b))^(1/2)/a*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x 
+c))^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*((1-cos( 
d*x+c))^3*a*((a-b)/(a+b))^(1/2)*csc(d*x+c)^3-(1-cos(d*x+c))^3*b*((a-b)/(a+ 
b))^(1/2)*csc(d*x+c)^3+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+ 
c)),(-(a+b)/(a-b))^(1/2))*a*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d* 
x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^( 
1/2)-EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b)) 
^(1/2))*a*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c) 
^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)+EllipticE(((a 
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b*(-(a*(1- 
cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/ 
2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)-a*((a-b)/(a+b))^(1/2)*(-cot(d*x 
+c)+csc(d*x+c))-b*((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)))/(a*(1-cos( 
d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(-((1-cos(d*x+ 
c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)-2*C/d/((a-b 
)/(a+b))^(1/2)*(-EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-( 
a+b)/(a-b))^(1/2))+2*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c) 
),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2)))*(a+b*sec(d*x+c))^(1/2)*sec(d*x+c)^(3 
/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2/(b+a*cos( 
d*x+c))/(1/(cos(d*x+c)+1))^(1/2)
 
3.8.60.5 Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, al 
gorithm="fricas")
 
output
Timed out
 
3.8.60.6 Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

input
integrate((A+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)/(sqrt(a + b*sec(c + d*x))*sqrt(sec(c + d* 
x))), x)
 
3.8.60.7 Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, al 
gorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + A)/(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + 
c))), x)
 
3.8.60.8 Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, al 
gorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)/(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + 
c))), x)
 
3.8.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1 
/2)),x)
 
output
int((A + C/cos(c + d*x)^2)/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1 
/2)), x)